225 research outputs found

    Charmless B→PV,VVB \to PV, VV decays and new physics effects in the mSUGRA model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless B→PV B \to PV and B→VVB \to VV decays in the framework of the minimal supergravity (mSUGRA) model. we choose three typical sets of the mSUGRA input parameters in which the Wilson coefficient C7Îł(mb)C_{7\gamma}(m_b) can be either SM-like (the case A and C) or has a flipped-sign (the case B). We found numerically that (a) the SUSY contributions are always very small for both case A and C; (b) for those tree-dominated decays, the SUSY contributions in case B are also very small; (c) for those QCD penguin-dominated decay modes, the SUSY contributions in case B can be significant, and can provide an enhancement about 3030% \sim 260% to the branching ratios of B→K∗(π,ϕ,ρ)B \to K^*(\pi,\phi,\rho) and KϕK \phi decays, but a reduction about 3030% \sim 80% to B→K(ρ,ω) B\to K(\rho, \omega) decays; and (d) the large SUSY contributions in the case B may be masked by the large theoretical errors dominated by the uncertainty from our ignorance of calculating the annihilation contributions in the QCD factorization approach.Comment: 34 pages, 8 PS figures, this is the correct version

    Charmless B→PPB \to PP decays and the new physics effects in the minimal supergravity model

    Full text link
    By employing the QCD factorization approach, we calculate the new physics contributions to the branching radios of the two-body charmless B→PP B \to PP decays in the framework of the minimal supergravity (mSUGRA) model. Within the considered parameter space, we find that (a) the supersymmetric (SUSY) corrections to the Wilson coefficients CkC_k (k=3−6k=3-6) are very small and can be neglected safely, but the leading order SUSY contributions to C7Îł(MW)C_{7\gamma}(M_W) and C8g(MW)C_{8g}(M_W) can be rather large and even change the sign of the corresponding coefficients in the standard model; (b) the possible SUSY contributions to those penguin-dominated decays in mSUGRA model can be as large as 30−5030-50%; (c) for the well measured B→KπB \to K \pi decays, the significant SUSY contributions play an important rule to improve the consistency of the theoretical predictions with the data; (d) for B→Kηâ€ČB \to K \eta' decays, the theoretical predictions of the corresponding branching ratios become consistent with the data within one standard deviation after the inclusion of the large SUSY contributions in the mSUGRA model.Comment: 31 pages, Latex file, 4 ps and eps figures, minor corrections, final version to appear in Physical Review

    Manipulating infrared photons using plasmons in transparent graphene superlattices

    Full text link
    Superlattices are artificial periodic nanostructures which can control the flow of electrons. Their operation typically relies on the periodic modulation of the electric potential in the direction of electron wave propagation. Here we demonstrate transparent graphene superlattices which can manipulate infrared photons utilizing the collective oscillations of carriers, i.e., plasmons of the ensemble of multiple graphene layers. The superlattice is formed by depositing alternating wafer-scale graphene sheets and thin insulating layers, followed by patterning them all together into 3-dimensional photonic-crystal-like structures. We demonstrate experimentally that the collective oscillation of Dirac fermions in such graphene superlattices is unambiguously nonclassical: compared to doping single layer graphene, distributing carriers into multiple graphene layers strongly enhances the plasmonic resonance frequency and magnitude, which is fundamentally different from that in a conventional semiconductor superlattice. This property allows us to construct widely tunable far-infrared notch filters with 8.2 dB rejection ratio and terahertz linear polarizers with 9.5 dB extinction ratio, using a superlattice with merely five graphene atomic layers. Moreover, an unpatterned superlattice shields up to 97.5% of the electromagnetic radiations below 1.2 terahertz. This demonstration also opens an avenue for the realization of other transparent mid- and far-infrared photonic devices such as detectors, modulators, and 3-dimensional meta-material systems.Comment: under revie

    Mid-infrared plasmons in scaled graphene nanostructures

    Full text link
    Plasmonics takes advantage of the collective response of electrons to electromagnetic waves, enabling dramatic scaling of optical devices beyond the diffraction limit. Here, we demonstrate the mid-infrared (4 to 15 microns) plasmons in deeply scaled graphene nanostructures down to 50 nm, more than 100 times smaller than the on-resonance light wavelength in free space. We reveal, for the first time, the crucial damping channels of graphene plasmons via its intrinsic optical phonons and scattering from the edges. A plasmon lifetime of 20 femto-seconds and smaller is observed, when damping through the emission of an optical phonon is allowed. Furthermore, the surface polar phonons in SiO2 substrate underneath the graphene nanostructures lead to a significantly modified plasmon dispersion and damping, in contrast to a non-polar diamond-like-carbon (DLC) substrate. Much reduced damping is realized when the plasmon resonance frequencies are close to the polar phonon frequencies. Our study paves the way for applications of graphene in plasmonic waveguides, modulators and detectors in an unprecedentedly broad wavelength range from sub-terahertz to mid-infrared.Comment: submitte

    Railway infrastructure asset management: the whole-system life cost analysis

    Get PDF
    Delivering the railway infrastructure whose functionality is sustainable and uncompromised in terms of safety and availability under ever decreasing budget constraints is a great challenge. The successful accomplishment of this task relies on the effective management of individual assets within a wider whole system perspective. This is a highly complex decision-making task where mathematical models are required to enable well-informed choices. In this study, a novel modelling framework is proposed for performing the whole system lifecycle cost analysis. The framework is based on two models: railway network performance and costs. Using the former model investigations of the effects of decisions can be carried out for the individual asset and the whole system. A Petri net modelling technique is used to construct the model. A form of Monte Carlo simulation is then used to obtain model results. The infrastructure performance model is then integrated with the cost model to perform the lifecycle cost analysis. A superstructure example is presented to demonstrate the application of the approach. The results show that taking into account interdependencies among the intervention activities greatly influences, not only the performance of the infrastructure, but also its lifecycle costs and thus should be included in the cost analysis

    A Novel Heat Shock Transcription Factor Family in <i>Entamoeba histolytica</i>

    Get PDF
    The HSTF is a master molecule involved in the transcriptional control of several genes during different types of stress. This transcription factor is a very conserved protein identified in different organisms from bacterial to human. <i>Entamoeba histolytica</i> is the protozoan responsible for the human amoebiasis. This parasite is exposed to different kind of stress as changes in the pH, temperature, drugs, all that situations in where the parasite needs survive. Here we identified and isolated a novel gene family of HSTFs in the protozoan parasite <i>E. histolytica</i>. Three members that we called <i>Ehhstf1</i>, <i>Ehhstf2</i> and <i>Ehhstf3</i> compose this family. Amino acid alignments and domain architecture analysis revealed that the EhHSTFs presents a conserved DNA-binding domain composed of approximately 25 residues. Interestingly this domain is shorter than the domain of the human, mouse and yeast HSTFs. Heterologous antibodies recognized four peptides of 73, 66, 47 and 23 kDa in total extracts from trophozoites growth under normal conditions. The 73, 47 and 23 kDa peptides increased their intensity when the cells were growth at 42°C by 2 h. All results together demonstrate that the amoeba present HSTFs, which may be, controlled the gene expression of this parasite under different stress situations

    Development of surface plasmon resonance-based sensor for detection of silver nanoparticles in food and the environment

    Get PDF
    Silver nanoparticles are recognized as effective antimicrobial agents and have been implemented in various consumer products including washing machines, refrigerators, clothing, medical devices, and food packaging. Alongside the silver nanoparticles benefits, their novel properties have raised concerns about possible adverse effects on biological systems. To protect consumer’s health and the environment, efficient monitoring of silver nanoparticles needs to be established. Here, we present the development of human metallothionein (MT) based surface plasmon resonance (SPR) sensor for rapid detection of nanosilver. Incorporation of human metallothionein 1A to the sensor surface enables screening for potentially biologically active silver nanoparticles at parts per billion sensitivity. Other protein ligands were also tested for binding capacity of the nanosilver and were found to be inferior to the metallothionein. The biosensor has been characterized in terms of selectivity and sensitivity towards different types of silver nanoparticles and applied in measurements of real-life samples—such as fresh vegetables and river water. Our findings suggest that human MT1-based SPR sensor has the potential to be utilized as a routine screening method for silver nanoparticles, that can provide rapid and automated analysis dedicated to environmental and food safety monitoring

    Differentially expressed genes in a flock of Chinese local-breed chickens infected with a subgroup J avian leukosis virus using suppression subtractive hybridization

    Get PDF
    Avian leukosis virus subgroup J (ALV-J) is a new type of virus that mainly induces myeloid leukosis (ML) in chickens. To further elucidate the pathogenesis of ALV-J infection and tumor development, expression profiles from the bone marrow tissue of 15 infected and 18 non-infected birds from a local-breed poultry-farm under naturally infected conditions, were analyzed by suppression-subtractive hybridization. The birds were diagnosed as ML+ (or ML-) by specific ALV-J detection methods, involving serological tests for antigens and antibodies, and RT-PCR to detect viral RNA. A total of 59 partial gene sequences were revealed by differential screening of 496 forward and 384 reverse subtracted cDNA clones. Of these, 22 identified genes, including 8 up-regulated and 14 down-regulated, were related to immune functions, these genes being, MHC B-G antigen, translationally-controlled tumor protein (TPT1/TPTC), transferrin and ferritin, hemoglobin and Carbonic anhydrase. Four of the down-regulated genes were selected for further analysis, in view of their predicted roles in infection and immunity by real-time qRT-PCR, using RNA collected from the same birds as those used for SSH. The four genes were expressed at significantly lower levels (p < 0.001) in ALV-J infected birds than in non-infected ones

    Avidity engineering of human heavy-chain-only antibodies mitigates neutralization resistance of SARS-CoV-2 variants

    Get PDF
    Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants
    • 

    corecore